lunes, 27 de julio de 2009

Mercurio (planeta)

Para otros usos de este término, véase Mercurio.
Mercurio Símbolo astronómico de Mercurio (planeta)
Elementos orbitales
Inclinación7,004 °
Excentricidad0,20563069
Período orbitalsideral87d 23,23h
Período orbitalsinódico115,88 días
Velocidad orbitalmedia47,8725 km/s
Radio orbital medio0,387 UA
57.894.376 km
Número de satélites0
Características físicas
Masa3,302×1023 kg
Densidad5,43 g/cm3
Área de superficie7,5 × 107 km2
Diámetro4.879,4 Km
Gravedad superficial3,7 m/s2
Velocidad de escape4,25 km/s
Inclinación axial0 °
Albedo0,10-0,12
Características atmosféricas
Presiónvestigios
Temperatura
Día623 K
Noche103 K
Mínima90 K
Media440 K
Máxima700 K
Composición
Potasio31,7%
Sodio24,9%
Oxígeno atómico9,5%
Argón7,0%
Helio5,9%
Oxígenomolecular5,6%
Nitrógeno5,2%
Dióxido de carbono3,6%
Agua3,4%
Hidrógeno3,2%

Comparación con la Tierra

Mercurio es el planeta del Sistema Solar más próximo al Sol y el más pequeño (a excepción de los planetas enanos). Forma parte de los denominados planetas interiores o rocosos. Mercurio no tiene satélites. Se conocía muy poco sobre su superficie hasta que fue enviada la sonda planetaria Mariner 10 y se hicieron observaciones con radares y radiotelescopios.

Introducción

Mercurio

Mercurio recibió este nombre de los romanos por el mensajero de pies alados de los dioses ya que parecía moverse más rápido que ningún otro planeta. Es el planeta más cercano al Sol, y el segundo más pequeño delSistema Solar. Su diámetro es un 40% más pequeño que la Tierra y un 40% más grande que la Luna. Es incluso más pequeño que la luna de Júpiter, Ganimedes o la luna de Saturno, Titán.

Se encuentra a una distancia aproximada del Sol de 58 millones de km, tiene un diámetro de 4.875 km, su volumen y su masa son semejantes a los de la Tierra y su densidad media es aproximadamente igual a la de la Tierra. Mercurio orbita alrededor del Sol cada 88 días (año del planeta). Los estudios de radar del planeta muestran que gira sobre su eje una vez cada 58,7 días o cada dos terceras partes de su periodo orbital; por tanto, gira una vez y media sobre su eje durante cada periodo orbital. Dado que su superficie es abrupta, porosa y de roca oscura.

Si un explorador pudiese poner sus pies en la superficie de Mercurio, descubriría un terreno muy parecido a la superficie lunar. Las colinas redondeadas y cubiertas de polvo de Mercurio han sido erosionadas por el constante bombardeo de meteoritos. Las fallas se levantan varios kilómetros en altura y se prologan cientos de kilómetros. Los cráteres recubren la superficie. El explorador notaría que el Sol parece dos veces y media más grande que en la Tierra; sin embargo, el cielo estás siempre negro debido a la falta de una atmósfera suficiente para provocar la dispersión de la luz. A medida que el explorador recorra el espacio con su vista, podría ver dos brillantes estrellas. Una con aspecto cremoso, Venus y la otra de color azul, la Tierra.

Recién entre 1974 y 1975 (sobrevuelos de la sonda espacial Mariner 10 sobre Mercurio) se pudo conocer más sobre el planeta debido a las dificultades de observación que tienen los telescopios de la Tierra. Las fotografías del planeta lo muestran muy parecido a la Luna, con una superficie llena de cráteres; sus temperaturas podían ser de 430 ºC en el lado iluminado por el Sol y de -180 ° C en el lado oscuro. La Mariner 10 detectó también un campo magnético con una fuerza del 1% del de la Tierra. La superficie de Mercurio, a diferencia de la de la Luna, está atravesada por grandes fracturas quizá procedentes del periodo de contracción que experimentó en sus primeros tiempos, cuando el planeta se enfrió. En su máxima elongación está a solo 28 grados del Sol tal como se puede ver desde la Tierra. Debido a esto, solo puede ser observado durante el ocaso o en horas diurnas, atravesando una masa considerable de la atmósfera terrestre.

En 1991 radiotelescopios terrestres de gran potencia revelaron señales de enormes extensiones de hielo en las regiones polares de Mercurio que la Mariner 10 no había cubierto.

En la década de 1880, Giovanni Schiaparelli realizó un dibujo que recogía algunas características tenues de Mercurio. Determinó que Mercurio debía estar anclado por las mareas al Sol, tal como lo está la Luna a la Tierra. En 1962, los radioatrónomos estudiaron las emisiones de radio procedentes de Mercurio y determinaron que el lado oscuro estaba demasiado caliente para que existiese este anclaje mareal. Debería estar mucho más frío si nunca se enfrentaba a los rayos del Sol. En 1965,Pettengill y Dyce determinaron el período de rotación de Mercurio en 59 +/- 5 días a partir de las observaciones por radar. Más tarde, en 1971, Goldstein refinó el período de rotación hasta los 58,65 +/- 0,25 días utilizando también observaciones por radar. Después de la observación cercana por la nave espacial Mariner 10, el período se estableció en 58,646 +/- 0,005 días.

Aunque Mercurio no está anclado por las mareas al Sol, su período rotacional está relacionado con su período orbital. Mercurio rota sobre si mismo una vez y media en cada órbita. Debido a esta relación 3:2, un día de Mercurio (de un amanecer a otro amanecer) dura 176 días terrestres.

Durante el pasado lejano de Mercurio, su período de rotación podría haber sido más rápido. Los científicos especulan que su rotación podría haberse realizado en tan sólo 8 horas, pero durante millones de años ha disminuidodebido a las mareas solares. Un modelo de este proceso indica que tal desaceleración podría tardar 109 años y aumentaría la temperatura interior del planeta unos 100 grados Kelvin.

La mayor parte de los hallazgos científicos proceden de la nave espacial Mariner 10 que fue lanzada el 3 de Noviembre de 1973. Pasó por las cercanías del planeta el 29 de Marzo de 1974 a una distancia de 705 kilómetros desde la superficie. El 21 de Septiembre de 1974 pasó por segunda vez cerca del planeta y el 16 de Marzo de 1975 lo hizo una tercera vez. Durante estas visitas, se realizaron mas de 2.700 fotografías, que cubren el 45% de la superficie de Mercurio. Hasta esa fecha los científicos no habían llegado a sospechar siquiera que Mercurio posía campo magnético. Pensaban que como era pequeño, su núcleo no se podía haber solidificado hace mucho tiempo. La presencia de un campo magnético indica que el planeta tiene un núcleo de hierro que esta al menos parcialmente fundido. Los campos magnéticos son generados por la rotación de un núcleo fundido conductivo en un proceso que recibe el nombre de efecto dínamo.

La Mariner 10 nos mostró que Mercurio posee un campo magnético que es el 1% del campo magnético terrestre. Este campo magnético está inclinado unos 7 grados respecto al eje de rotación de Mercurio y produce magnetosfera alrededor del planeta. La fuente de este campo magnético es desconocida. Podría deberse a un núcleo de hierro parcialmente fundido situado en el interior del planeta. Otra fuente del campo podría ser la magnetización remanente de las rocas con hierro en su composicóin que fueron magnetizadas por un campo mágnetico más potente durante los años de juventud del planeta. A medida que el planeta se enfrió y solidificó la magnetización remanente se conservó.

Incluso antes de la Mariner 10, ya se sabía que Mercurio tenía una densidad elevada. Su densidad es 5,44 g/cm3 que es comparable a la densidad terrestre de 5,52 g/cm3. En un estado sin compresión, la densidad de Mercurio es de 5,5 g/cm3 mientras que la de la Tierra sólo llega a los 4,0 g/cm3. Esta alta densidad indica que el planeta está compuesto en un 60 a 70 por ciento por metales pesados y un 30% por silicatos pesado. Esto da lugar a un núcleo que ocupa el 75% del radio del planeta y tiene un volumen igual al 42% del volumen total del planeta.

Los estudios espectroscópicos de Mercurio nos muestran una tenue atmósfera que contiene sodio y potasio; en apariencia, sus átomos proceden de la corteza del planeta. Sus colisiones con otros planetas de nueva formación en los orígenes del sistema solar pudieron despojarle de los materiales más ligeros, lo que explica la relativamente alta densidad de Mercurio. La fuerza de gravedad de la superficie del planeta es más o menos una tercera parte de la de la Tierra.

La superficie de Mercurio

Las imágenes enviadas a la Tierra por la nave espacial Mariner 10 muestran un mundo que recuerda a la Luna. Está recubierto por cráteres, contiene grandes cuencas de anillos múltiples, y muchos ríos de lava. Los cráteres van desde los 100 metros (tamaño más pequeño que se puede diferenciar en las imágenes de la Mariner 10) hasta los 1.300 kilómetros. Aparecen en varios estados de preservación. Algunos son jóvenes con bordes abruptos y brillantes rayos que se alejan de ellos. Otros están muy degradados, con bordes que han sido suavizados por el bombardeo de meteoritos. El cráter más grande de Mercurio es la Cuenca Caloris. Una cuenca segun Hartmann y Kuiper (1962) esta definida como una "gran depresión circular con diferentes anillos concéntricos y alineaciones radiales". Otros consideran que cualquier cráter superior a los 200 kilómetros es una cuenta. La Cuenca Caloris tiene 1.300 kilómetros de diámetro, y fue causada probablemente por proyectiles que superaban los 100 kilómetros de sección. El impacto dio lugar a anillos montañosos concéntricos con alturas de tres kilómetros y enviaron su
eyecciones hasta los 600 u 800 kilómetros sobre la superficie del planeta. (Otro buen ejemplo de cuenca con anillos concéntricos es la Región Valhalla en la luna de Júpiter, Calisto) Las ondas sísmicas producidas por el impacto en Caloris se enfocaron en el otro lado del planeta, dando lugar a una región de terreno caótico. Después del impacto el cráter se llenó parcialmente por ríos de lava.

Mercurio está marcado por grandes acantilados curvos o escarpaduras lobulares que fueron aparentemente formados a medida que Mercurio
se enfriaba y se encogía en tamaño varios kilómetros. Esta reducción de tamaño produjo una corteza arrugada con farallones de varios
kilómetros de altura y cientos de kilómetros de longitud.

La mayor parte de la superficie de Mercurio está cubierta por llanuras. Muchas de ellas son viejas y están llenas de cráteres, pero algunas más
jóvenes tienen menos cráteres. Los científicos han clasificado estas llanuras como llanuras intercráter y llanuras suaves. Las primeras están
menos saturadas de cráteres y estos tienen diámetros inferiores a los 15 kilómetros. Estas llanuras fueron formadas probablemente cuando
los ríos de lava sepultaron el terreno antiguo. Las llanuras suaves son más jóvenes todavía con menos cráteres. Estas últimas se pueden
encontrar alrededor de la cuenca Caloris En algunas zonas se pueden ver parches de lava lisa que recubren los cráteres.

La historia de la formación de Mercurio es similar a la de la Tierra. Hace unos 4.500 millones de años se formó el planeta. Esta fue una época
de intenso bombardeo de los planetas a medida que recolectaban el material y los restos de la nebulosa de la que se formaron. En una etapa
temprana de esta formación, Mercurio probablemente se diferenció en un denso núcleo metálico y una corteza de silicatos. Despues de un período de intenso bombardeo, la lava corrío por la superficie del planeta y recubrió la antigua corteza. Alcanzado este punto, la mayor parte de los residuos de la nebulosa original habían sido barridos ya y Mercurio entró en un período de bombardeo más ligero. Durante este período se formaron las llanuras intercráteres. Luego Mercurio se enfrió. Su núcleo se contrajo dando lugar a su vez a la rotura de la corteza y originando la aparición de prominentes escarpes lobulares. Durante la tercera etapa, la lava anegó las tierras bajas y produjo las llanuras suaves. Durante la cuarta etapa el bombardeo de micrometeoritos produjo una superficie pulverulenta también conocida como regolito. Unos pocos meteoritos de mayor tamaño chocaron contra la superficie produciendo brillantes cráteres con radios. Salvo por las ocasionales colisiones de algún meteorito, la superficie de Mercurio ya no está activa y permanece como estaba hace millones de años.

¿Puede existir agua en Mercurio?

Podría parecer que Mercurio no puede poseer agua bajo ninguna forma. Tiene una atmósfera muy tenue y está muy caliente durante el día, pero en 1991 científicos del Caltech lanzaron ondas de radio sobre Mercurio y detectaron un retorno brillante muy poco usual sobre el polo norte del planeta. El aparente brillo del polo norte podría ser explicado por la presencia de hielo sobre o justo debajo de la superfice. Pero, ¿es posible que Mecurio tenga hielo? Debido a que la rotación de Mercurio es casi perpendicular a su plano orbital, el polo norte siempre ve el sol por debajo del horizonte y los científicos sospechan que podría estas a temperatura inferiores a los -161° C. Estas gélidas temperaturas podrían atrapar el agua que surge del planeta en forma de gas, o los hielos llevados hasta allí por los impactos cometarios. Estos depósitos de hielo podrían estar cubiertos por una capa de polvo y, a pesar de ello, dar un retorno brillante en el radar

Antiguamente se pensaba que Mercurio siempre presentaba la misma cara al Sol, situación similar al caso de la Luna con la Tierra; es decir, que su periodo de rotación era igual a su periodo de traslación, ambos de 88 días. Sin embargo, en 1965 se mandaron pulsos de radar hacia Mercurio, con lo cual quedó definitivamente demostrado que su periodo de rotación era de 58,7 días, lo cual es 2/3 de su periodo de traslación. Esto no es coincidencia, y es una situación denominada resonancia orbital.

Al ser un planeta cuya órbita es interior a la de la Tierra, Mercurio periódicamente pasa delante del Sol, fenómeno que se denominatránsito (ver tránsito de Mercurio). Observaciones de su órbita a través de muchos años demostraron que el perihelio gira 43" de arco más por siglo de lo predicho por la mecánica clásica de Newton. Esta discrepancia llevó a un astrónomo Francés, Urbain Le Verrier, a pensar que existía un planeta aún más cerca del Sol, al cual llamaron Planeta Vulcano, que perturbaba la órbita de Mercurio. Ahora se sabe que Vulcano no existe; la explicación correcta del comportamiento del perihelio de Mercurio se encuentra en la Teoría General de la Relatividad.

Contenido

[ocultar]

Formación de Mercurio [editar]

Mercurio tiene un contenido de hierro más alto que cualquier otro planeta principal en nuestro sistema solar, y se han propuesto variasteorías para explicar esto.

  • La primera teoría, que es la más extensamente aceptada entre los científicos, es que Mercurio al principio tenía una proporción de silicato metálico (condrito) similar a los meteoritos corrientes (se piensa que es el material rocoso más típico del sistema solar) y una masa aproximadamente 2,25 veces su masa actual (diferencia notable). Sin embargo, en los comienzos del sistema solar, Mercurio fue golpeado por un planetesimal de aproximadamente 1/6 de su masa. El impacto habría quitado la mayor parte de la corteza original y su manto, dejando al núcleo como el componente principal de toda la estructura interna.1 Se cree que la creación de la Luna tuvo un proceso similar.
  • Según la segunda teoría, Mercurio podría haberse formado de la nebulosa planetaria originaria de nuestro sistema solar antes de que la energía del Sol se estabilizara. El planeta en un principio habría tenido dos veces su masa actual. Pero como el protosol se contrajo, las temperaturas cerca de Mercurio podrían haber estado entre 2.500 y 3.500 K, y posiblemente hasta tan altas como 10.000 K. La mayor parte de la roca superficial de Mercurio se habría vaporizado con tales temperaturas, formando una atmósfera de vapor de roca, que posteriormente el viento solar se encargaría de disipar en el espacio.2

Cada una de estas teorías predice una composición superficial diferente, y dos misiones espaciales, MESSENGER y BepiColombo, tienen como objetivo tomar observaciones para contrastar su veracidad.

Estructura interna [editar]

Estructura interna de Mercurio:
(1) Corteza
(2) Manto
(3) Núcleo

Mercurio es uno de los cuatro planetas sólidos o rocosos; es decir, tiene un cuerpo rocoso como la Tierra. Este planeta es el más pequeño de los cuatro, con un diámetro de 4879 km en el ecuador. Mercurio está formado aproximadamente por un 70% de elementos metálicos y un 30% de silicatos. La densidad de este planeta es la segunda más grande de todo el sistema solar, siendo su valor de 5.430 kg/m3, solo un poco más pequeña que la densidad de la Tierra. La densidad de Mercurio se puede usar para deducir los detalles de su estructura interna. Mientras la alta densidad de la Tierra se explica considerablemente por la compresión gravitacional, particularmente en el núcleo, Mercurio es mucho más pequeño y sus regiones interiores no están tan comprimidas. Por tanto, para explicar esta alta densidad, el núcleo debe ocupar gran parte del planeta y además ser rico en hierro,4 material con una alta densidad.5 Los geólogos estiman que el núcleo de Mercurio ocupa un 42% de su volumen total (el núcleo de la Tierra apenas ocupa un 17%). Este núcleo estaría parcialmente fundido,6 7 lo que explicaría el campo magnético del planeta.

Rodeando el núcleo existe un manto de unos 600 km de grosor. La creencia generalizada entre los expertos es que en los principios de Mercurio, un cuerpo de varios kilómetros de diámetro (un planetesimal) impactó contra él deshaciendo la mayor parte del manto original, dando como resultado un manto relativamente delgado comparado con el gran núcleo.1 (Otras teorías alternativas se discuten en la sección Formación de Mercurio).

La corteza mercuriana mide en torno a los 100-200 km de espesor. Un hecho distintivo de la corteza de Mercurio son las visibles y numerosas líneas escarpadas o escarpes que se extienden varios miles de kilómetros a lo largo del planeta. Presumiblemente se formaron cuando el núcleo y el manto se enfriaron y contrajeron al tiempo que la corteza se estaba solidificando.8

Geología y superficie [editar]

Artículo principal: Geología de Mercurio
Imagen de la superficie de Mercurio en falso color obtenida por la Mariner 10. Los colores ponen en evidencia regiones de composición diferente, particularmente las planicies lisas nacidas de cuencas de lava (arriba a la izquierda, en naranja).

La superficie de Mercurio, como la de la Luna, presenta numerosos impactos de meteoritos que oscilan entre unos metros hasta miles de kilómetros. Algunos de los cráteres son relativamente recientes, de algunos millones de años de edad, y se caracterizan por la presencia de un pico central. Parece ser que los cráteres más antiguos han tenido una erosión muy fuerte, posiblemente debida a los grandes cambios de temperatura que en un día normal oscilan entre 623 K (350 ºC) por el día y 103 K (–170 ºC) por la noche.

Al igual que la Luna, Mercurio parece haber sufrido un período de intenso bombardeo de meteoritos de grandes dimensiones, hace unos 4000 millones de años. Durante este periodo de formación de cráteres, Mercurio recibió impactos en toda su superficie, facilitado por la práctica ausencia de atmósfera, que pudiera desintegrar o frenar multitud de estas rocas. Durante este tiempo Mercurio fue volcánicamente activo, formándose cuencas o depresiones con lava del interior del planeta, produciendo planicies lisas similares a los mares o marías de la Luna; una prueba de ello es el descubrimiento por parte de la sonda MESSENGER de posibles volcanes.9

Las planicies o llanuras de Mercurio tienen dos distintas edades; las jóvenes llanuras están menos craterizadas y probablemente se formaron cuando los flujos de lava enterraron el terreno anterior. Un rasgo característico de la superficie de este planeta son los numerosos pliegues de compresión que entrecruzan las llanuras. Se piensa que como el interior del planeta se enfrió, se contrajo y la superficie comenzó a deformarse. Estos pliegues se pueden apreciar por encima de cráteres y planicies, lo que hace indicar que son mucho más recientes.10 La superficie mercuriana está significativamente flexada a causa de la fuerza de marea ejercida por el Sol. Las fuerzas de marea en Mercurio son un 17% más fuertes que las ejercidas por la Luna en la Tierra.11

Destacable en la geología de Mercurio es la Cuenca de Caloris, un cráter de impacto que constituye una de las mayores depresiones meteóricas de todo el sistema solar; ésta formación geológica tiene un diámetro aproximado de 1550 km (antes del sobrevuelo de la sonda MESSENGER se creía que su tamaño era de 1300 km). Contiene además una formación de origen desconocido no antes vista ni en el propio Mercurio ni en la Luna, y que consiste en aproximadamente un centenar de grietas estrechas y de suelo liso conocida como La Araña; en el centro de ésta se encuentra un cráter, desconociéndose si dicho cráter está relacionado con su formación o no. Interesantemente, también el albedo de la Cuenca de Caloris es superior al de los terrenos circundantes (al revés de lo que ocurre en la Luna). La razón de ello está siendo investigada.12

Justo en el lado opuesto de esta inmensa formación geológica se encuentran unas colinas o cordilleras conocidas como Terreno Extraño, o Weird Terrain. Una hipótesis sobre el origen de este complejo geomorfológico es que las ondas de choque generadas por el impacto que formó la Cuenca de Caloris atravesaron toda la esfera planetaria convergiendo en las antípodas de dicha formación (180º), fracturando la superficie13 y formando esta cordillera.

Al igual que otros astros de nuestro sistema solar, como el más semejante en aspecto, la Luna, la superficie de Mercurio probablemente ha incurrido en los efectos de procesos de desgaste espaciales, o erosión espacial. El viento solar e impactos de micrometeoritos pueden oscurecer la superficie cambiando las propiedades reflectantes de ésta y el albedo general de todo el planeta.

A pesar de las temperaturas extremadamente que hay generalmente en su superficie, observaciones más detalladas sugieren la existencia de hielo en Mercurio. El fondo de varios cráteres muy profundos y oscuros cercanos a los polos que nunca han quedado expuestos directamente a la luz solar tienen una temperatura muy inferior a la media global. El hielo (de agua) es extremadamente reflectante al radar, y recientes observaciones revelan imágenes muy reflectantes en el radar cerca de los polos;14 el hielo no es la única causa posible de dichas regiones altamente reflectantes, pero sí la más probable. Se especula que el hielo tiene sólo unos metros de profundidad de estos cráteres, conteniendo alrededor de una toneladade esta sustancia. El origen del agua helada en Mercurio no es conocido a ciencia cierta, pero se especula que o bien se condensó de agua del interior del planeta o vino de cometas que impactaron contra el suelo.15

Atmósfera [editar]

Contrariamente a lo que se creía, la sonda Mariner 10 demostró la existencia de una atmósfera, muy tenue, constituida principalmente por potasio y sodio, con trazas de otros elementos. La presión de la atmósfera parece ser sólo una cien milésima parte de la presión atmosférica en la superficie de la Tierra.

De acuerdo con la teoría más aceptada por los científicos, la causa de que la atmósfera sea tan liviana es que Mercurio es un planeta muy pequeño con una gravedad insuficiente para retener durante largos periodos de tiempo una densidad atmosférica relevante. Esta atmósfera de átomos no estables pierde y reemplaza sus elementos de diversas formas: el hidrógeno y el helio provienen del viento solar, difuminándose en la magnetosfera para después escaparse al espacio. La caída radioactiva de elementos dentro de la corteza de Mercurio es otra fuente de helio, así como de sodio y potasio. El vapor de agua, probablemente presente, podría provenir de impactos de cometas sobre la superficie del planeta.

La sonda MESSENGER ha confirmado la presencia de dicha atmósfera (tan tenue que es muy raro que los átomos que la componen colisionen entre sí) y de hecho ha descubierto sodio en abundancia en una especie de "cola" que se extiende en dirección opuesta a la del Sol y que llega hasta unos 40.000 kilómetros, así cómo una asimetría norte-sur en la distribución del sodio y del hidrógeno.16

Magnetosfera [editar]

El estudio de la interacción de Mercurio con el viento solar ha puesto en evidencia la existencia de una magnetosfera en torno al planeta. El origen de este campo magnético no es conocido, aunque algunos autores creen que puede ser debido a una corriente eléctrica inducida en las capas exteriores de la atmósfera del planeta por el movimiento de las líneas del campo magnético interplanetario que giran por la rotación del Sol. En 2007 observaciones muy precisas realizadas desde la Tierra mediante radar, demostraron un bamboleo del eje de rotación compatible sólo con un núcleo del planeta parcialmente fundido.6 7 Un núcleo parcialmente fundido con materiales ferromagnéticos podría se la causa de su campo magnético.

Órbita y rotación [editar]

Órbita de Mercurio (en amarillo).

La órbita de Mercurio es la más excéntrica de los planetas menores, con la distancia del planeta al Sol en un rango entre 46 millones y 70 millones de kilómetros. Tarda en dar una traslación completa en 88 días terrestres. Presenta además una inclinación orbital (con respecto al plano de la eclíptica) de 7º.

En la imagen anexa se ilustran los efectos de la excentricidad, mostrando la órbita de Mercurio sobre una órbita circular que tiene el mismo semieje. La elevada velocidad del planeta cuando está cerca del perihelio hace que cubra esta mayor distancia en un intervalo de sólo cinco días. El tamaño de las esferas, inversamente proporcional a la distancia al Sol, es usado para ilustrar la distancia variable heliocéntrica. Esta distancia variable al Sol, combinada con la rotación planetaria de Mercurio de 3:2 alrededor de su eje, resulta en complejas variaciones de la temperatura de su superficie, pasando de los -185ºC durante las noches hasta los 430ºC durante el día.

La oblicuidad de la eclíptica es de solo 0,01º (grados sexagesimales), unas 300 veces menos que la de Júpiter, que es el segundo planeta en esta estadística, con 3,1º (en la Tierra es de 23,5º). De esta forma un observador en el ecuador de Mercurio durante el mediodía local nunca vería el Sol más que 0.01º al norte o al sur del cenit. Análogamente, en los polos el sol nunca pasa 0.01º por encima del horizonte.

Amanecer doble [editar]

En Mercurio existe el fenómeno de los amaneceres dobles, donde el Sol sale, se detiene, se esconde nuevamente casi exactamente por donde salió y luego vuelve a salir para continuar su recorrido por el cielo; esto solo ocurre en algunos puntos de la superficie: por el mismo procedimiento, en el resto del planeta se observa que el Sol aparentemente se detenga en el cielo y realice un movimiento de giro. Esto es porque aproximadamente cuatro días antes del perihelio, la velocidad angular orbital de Mercurio iguala su velocidad angular rotatoria, lo que hace que el movimiento aparente del Sol cese; justo en el perihelio, la velocidad angular orbital de Mercurio excede la velocidad angular rotatoria. De esta forma se explica este movimiento aparente retrógrado del Sol. Cuatro días después del perihelio, el Sol vuelve a tomar un movimiento aparente normal pasando por estos puntos.

Avance del perihelio [editar]

El avance del perihelio de Mercurio fue notado en el siglo XIX por la lenta precesión de la órbita del planeta alrededor del Sol, la cual no se explicaba completamente por las leyes de Newton ni por perturbaciones por planetas conocidos (trabajo muy notable del matemático francés Urbain Le Verrier). Se supuso entonces que otro planeta en una órbita más interior al Sol era el causante de estas perturbaciones (se consideraron otras teorías como un leve achatamiento de los polos solares). El éxito de la búsqueda de Neptuno a consecuencia de las perturbaciones orbitales de Urano hicieron poner mucha fe a los astrónomos para esta hipótesis. Este planeta desconocido se le denominaría planeta Vulcano. Sin embargo, a comienzos del sigo 20, la Teoría General de la Relatividad de Albert Einstein explicaba la precesión observada, descartando al inexistente planeta. El efecto es muy pequeño: el efecto de dicha relatividad en el avance del perihelio mercuriano excede en justo 42,98 arcosegundos por siglo, tanto que necesita 12 millones de órbitas para exceder un turno completo. Similar, pero con efectos mucho menores, opera para otros planetas, siendo 8,52 arcosegundos por siglo para Venus, 3,84 para la Tierra, 1,35 para Marte, y 10,05 para el asteroide Apolo (1566) Ícaro.17 18

En una órbita, Mercurio rota 1,5 veces, después de dos órbitas el mismo hemisferio vuelve a ser iluminado.

Resonancia orbital [editar]

Durante muchos años se pensó que la misma cara de Mercurio miraba siempre hacia el Sol, de forma sincrónica, similar a como lo hace la Luna. No fue hasta 1965 cuando observaciones por radio (ver Observación con Grandes Telescopios) descubrieron una resonancia orbital de 2:3, rotando tres veces cada dos años mercurianos; la excentricidad de la órbita de Mercurio hace esta resonancia estable en el perihelio, cuando la marea solar es más fuerte, el Sol está todavía en el cielo de Mercurio. La razón por la que los astrónomos pensaban que Mercurio giraba de manera sincrónica era que siempre que el planeta estaba en mejor posición para su observación, mostraba la misma cara. Ya que Mercurio gira en un 3:2 de resonancia orbital, un día solar (la duración entre dos tránsitos meridianos del Sol) son unos 176 días terrestres. Un día sideral es de unos 58,7 días terrestres.

Simulaciones orbitales indican que la excentricidad de la órbita de Mercurio varía caóticamente desde 0 (circular) a 0,47 a lo largo de millones de años. Esto da una idea para explicar la resonancia orbital mercuriana de 2:3, cuando lo más usual es 1:1, ya que esto es más razonable para un periodo con una excentricidad tan alta.19

Observación en el cielo y tránsito de Mercurio [editar]

La magnitud aparente de Mercurio varía entre -2,0 (brillante como la estrella Sirio) y 5,5.20 La observación de Mercurio es complicada por su proximidad al Sol, perdido en el resplandor de la estrella madre durante un periodo de tiempo muy grande. Mercurio solo se puede observar por un corto periodo de tiempo durante el crepúsculo de la mañana o de la noche. El Telescopio Espacial Hubble no puede observar Mercurio del todo, ya que por procedimientos de seguridad se evita un enfoque tan cercano al Sol.

Observación de las fases mercurianas [editar]

Como la Luna, Mercurio exhibe fases vistas desde la Tierra, siendo nueva en conjunción inferior y llena en conjunción superior. El planeta deja de ser invisible en ambas ocasiones por la virtud de este ascenso y ubicación acuerdo con el Sol en cada caso. La primera y última fase ocurre en máxima elongación este y oeste, respectivamente, cuando la separación de Mercurio del rango del Sol es de 18,5º en el periastro y 28,3 en el apoastro. En máxima elongación oeste, Mercurio se eleva antes que el Sol y en la este después que el Sol.

Mercurio alcanza una conjunción inferior cada 116 días de media, pero este intervalo puede cambiar de 111 a 121 días por la excentricidad de la órbita del planeta. Este periodo demovimiento retrógrado visto desde la Tierra puede variar de 8 a 15 días en cualquier lado de la conjunción inferior. Esta larga variación de tiempo es consecuencia también de la elevada excentricidad orbital.

Mercurio es más fácil de ver desde el hemisferio sur de la Tierra que desde el hemisferio norte; esto se debe a que la máxima elongación del oeste posible del Sol siempre ocurre cuando es otoño en el hemisferio sur, mientras que la máxima elongación del este ocurre cuando es invierno en el hemisferio norte. En ambos casos, el ángulo de Mercurio incide de manera máxima con la eclíptica, permitiendo elevarse varias horas antes que el Sol y no se pone hasta varias horas después del ocaso en los países situados en latitudes templadas del hemisferio sur, como Argentina y Nueva Zelanda. Por contraste, en las latitudes templadas del hemisferio norte, Mercurio nunca está por encima del horizonte en más o menos a media noche. Mercurio puede, como otros muchos planetas y estrellas brillantes, ser visto durante un eclipse solar.

Tránsito de Mercurio (8 de noviembre de 2006). Imagen captada por el SOHO.

Además, Mercurio es más brillante visto desde la Tierra cuando se encuentra entre la fase creciente o la menguante y la llena. Aunque el planeta está más lejos en ese momento que cuando está creciente, el área iluminada visible mayor compensa esa mayor distancia. Justo al contrario que Venus, que aparece más brillante cuando está en cuarto creciente, porque está mucho más cerca de la Tierra.

Tránsito de Mercurio [editar]

Artículo principal: Tránsito de Mercurio

El tránsito de Mercurio es el paso, observado desde la Tierra, de este planeta por delante del Sol. La alineación de estos tres astros (Sol, Mercurio y laTierra) produce este particular efecto, sólo comparable con el tránsito de Venus. El hecho de que Mercurio esté en un plano diferente en la eclíptica que nuestro planeta (7º de diferencia) hace que sólo una vez cada varios años ocurra este fenómeno. Para que el tránsito se produzca, es necesario que la Tierra esté cerca de los nodos de la órbita. La Tierra atraviesa cada año la línea de los nodos de la órbita de Mercurio el 8-9 de mayo y el 10-11 de noviembre; si para esa fecha coincide una conjunción inferior habrá paso. Existe una cierta periodicidad en estos fenómenos aunque obedece a reglas complejas. Es claro que tiene que ser múltiplo del periodo sinódico. Mercurio suele transitar el disco solar un promedio de unas 13 veces al siglo en intervalos de 3, 7, 10 y 13 años.

Estudio de Mercurio [editar]

Astronomía antigua [editar]

Las primeras menciones sobre Mercurio datan del milenio tres antes de Jesucristo por los sumerios. Los babilonios (2000-500 A.C.) hicieron igualmente nuevas observaciones sobre el planeta, denominándolo como Nabu o Nebu, el mensajero de los dioses en su mitología.21

Los observadores de la Antigua Grecia llamaron al planeta de dos maneras: Apolo cuando era visible en el cielo de la mañana y Hermes cuando lo era al anochecer. Sin embargo, los astrónomos griegos se dieron cuenta que se referían al mismo cuerpo celeste, siendo Pitágoras el primero en proponer la idea.22

Estudio con grandes telescopios [editar]

Mercurio según Schiaparelli
Cartografía de Mercurio realizada por Percival Lowell en Enero de1896

Las primeras observaciones con telescopio de Mercurio datan de Galileo en el siglo XVII. Aunque él observara las fases planetarias cuando miraba a Venus, su telescopio no era lo suficientemente potente para distinguir las fases de Mercurio. En 1631 Pierre Gassendi realizó las primeras observaciones del tránsito de Mercurio cruzando el Sol cuando vio el tránsito de Mercurio predicho por Johannes Kepler. En 1639 Giovanni Zupi usó un telescopio para descubrir que el planeta tenía una fase orbital similar a la de Venus y la Luna. La observación demostró de manera concluyente que Mercurio orbitaba alrededor del Sol.

Un hecho muy raro en la astronomía es que un planeta pase delante de otro (ocultación), visto desde la Tierra. Mercurio y Venus se ocultan cada varios siglos, y el 28 de mayo de 1737 ocurrió el único e histórico registrado. El astrónomo que lo observó fue John Bevis en el Real Observatorio de Greenwich.23 La próxima ocultación ocurrirá en 2133.

En 1800 Johann Schröter pudo hacer algunas observaciones de la superficie, pero erróneamente estimó que el planeta tenía un periodo de rotaciónsimilar a la terrestre, de unas 24 horas. En la década de 1880 Giovanni Schiaparelli realizó un mapa de Mercurio más correcto, y sugirió que su rotación era de 88 días, igual que su período de traslación (rotación sincrónica).24

La teoría por la cual la rotación de Mercurio era sincrónica se hizo extensamente establecida, y fue un giro de 180º cuando los astrónomos mediante observaciones de radio en los años 1960 cuestionaron la teoría. Si la misma cara de Mercurio estuviera dirigida siempre hacia el Sol, la parte en sombra estaría extremadamente fría, pero las mediciones de radio revelaron que estaba mucho más caliente de lo esperado. En 1965 se constató que definitivamente el periodo de rotación era de 59 días. El astrónomo italiano Giuseppe Colombo notó que este valor era sobre dos terceras partes del período orbital de Mercurio, y propuso una forma diferente de la fuerza de marea que hizo que los períodos orbitales y rotatorios del planeta se quedasen en 3:2 más bien que en 1:1 (resonancia orbital).25 Más tarde la Mariner 10 lo confirmó.26

Las observaciones por grandes telescopios en tierra no arrojaron mucha luz sobre este mundo difícil de ver, y no fue hasta la llegada de sondas espaciales que visitaron Mercurio cuando se descubrieron y confirmaron grandes e importantes propiedades del planeta. No obstante, recientes avances tecnológicos han llevado a observaciones mejoradas: en 2000, el telescopio de alta resolución del Observatorio Monte Wilson de 1500 mmproporcionó las primeras imágenes que resolvieron algunos rasgos superficiales sobre las regiones de Mercurio que no fueron fotografiadas durante las misiones del Mariner.27 Imágenes recientes apuntan al descubrimiento de una cuenca de impacto de doble anillo más largo que la Cuenca de Caloris, en el hemisferio no fotografiado por la Mariner. Es informalmente conocido como Cuenca de Shinakas.

Estudio con sondas espaciales [editar]

Llegar hasta Mercurio desde la Tierra supone un significativo reto tecnológico, ya que la órbita del planeta está mucho más cerca que la terrestre al Sol. Una nave espacial con destino a Mercurio lanzada desde nuestro planeta deberá de recorrer unos 91 millones de kilómetros por los puntos de potencialgravitatorio del Sol. Comenzando desde la órbita terrestre a unos 30 km/s, el cambio de velocidad que la nave debe realizar para entrar en una órbita de transferencia, conocida como órbita de transferencia de Hohmann (en la que se usan dos impulsos del motor cohete) para pasar cerca de Mercurio es muy grande comparado con otras misiones planetarias.

Además, para conseguir entrar en una órbita estable el vehículo espacial debe confiar plenamente en sus motores de propulsión, puesto que el aerofrenado está descartado por la falta de atmósfera significativa en Mercurio. Un viaje a este planeta en realidad es más costoso en lo que a combustible se refiere por este hecho que hacia cualquier otro planeta del sistema solar.[cita requerida]

Mariner 10 [editar]

Mariner 10
Artículo principal: Mariner 10

La sonda Mariner 10 (1974-1975), o Mariner X, fue la primera nave en estudiar en profundidad el planeta Mercurio. Era una sonda interplanetaria, puesto que visitó también Venus, utilizando la asistencia de trayectoria gravitacional utilizando a Venus para acelerar hasta el planeta, estableciendo una órbita alrededor del Sol en dirección opuesta a la terrestre.

Su paso por Mercurio se produjo en tres ocasiones; la primera vez a una distancia de 703 km del planeta, la segunda vez a 48.069 km, y la tercera a 327 km. Mariner tomó en total diez imágenes de casi la mitad del planeta. La misión finalizó el 24 de marzo de 1975 cuando se quedó sin combustible y no podía mantener la órbita alrededor del Sol.

MESSENGER [editar]

MESSENGER
Artículo principal: MESSENGER

MErcury Surface, Space ENvironment, GEochemistry and Ranging (Superficie de Mercurio, Entorno Espacial, Geoquímica y Extensión) es una sonda lanzada en agosto de 2004 que se pondrá en órbita alrededor de Mercurio en marzo de 2011. Se espera que esta nave aumente considerablemente el conocimiento científico sobre este planeta. Para ello, la nave orbitará Mercurio realizando dos sobrevuelos -uno de ellos acaecido el día 14 de enero de2008 y el otro el día 6 de octubre de 2008-. La misión está previsto que dure un año.

BepiColombo [editar]

Artículo principal: BepiColombo

Es una misión conjunta de la Agencia Espacial Europea (ESA) y de la Agencia Japonesa de Exploración Espacial (JAXA), que consiste en dos módulos orbitantes u orbitadores que realizarán una completa exploración de Mercurio. El primero de los orbitadores será el encargado de fotografiar y analizar el planeta y el segundo investigará la magnetosfera. Su lanzamiento está previsto en agosto de 2013, la llegada al planeta en septiembre de 2019, y el final de la misión para un año más tarde.28


Mercurio

When men are arrived at the goal, they should not turn back.- Plutarch



Lista de Temas

Introducción

Mercurio recibió este nombre de los romanos por el mensajero de pies alados de los dioses ya que parecía moverse más rápido que ningún otro planeta. Es el planeta más cercano al Sol, y el segundo más pequeño del sistema solar. Su diámetro es un 40% más pequeño que la Tierra y un 40% más grande que la Luna. Es incluso más pequeño que la luna de Júpiter, Ganimedes o la luna de Saturno, Titán.

Si un explorador pudiese poner sus pies en la superficie de Mercurio, descubriría un terreno muy parecido a la superficie lunar. Las colinas redondeadas y cubiertas de polvo de Mercurio han sido erosionadas por el constante bombardeo de meteoritos. Las fallas se levantan varios kilómetros en altura y se prologan cientos de kilómetros. Los cráteres recubren la superficie. El explorador notaría que el Sol parece dos veces y media más grande que en la Tierra; sin embargo, el cielo estás siempre negro debido a la falta de una atmósfera suficiente para provocar la dispersión de la luz. A medida que el explorador recorra el espacio con su vista, podría ver dos brillantes estrellas. Una con aspecto cremoso, Venus y la otra de color azul, la Tierra.

Hasta el Mariner 10, poco se sabía sobre Mercurio debido a las dificultades de observación que tienen los telescopios de la Tierra. En su máxima elongación está a solo 28 grados del Sol tal como se puede ver desde la Tierra. Debido a esto, solo puede ser observado durante el ocaso o en horas diurnas, atravesando una masa considerable de la atmósfera terrestre.

En la década de 1880, Giovanni Schiaparelli realizó un dibujo que recogía algunas características tenues de Mercurio. Determinó que Mercurio debía estar anclado por las mareas al Sol, tal como lo está la Luna a la Tierra. En 1962, los radioatrónomos estudiaron las emisiones de radio procedentes de Mercurio y determinaron que el lado oscuro estaba demasiado caliente para que existiese este anclaje mareal. Debería estar mucho más frío si nunca se enfrentaba a los rayos del Sol. En 1965,Pettengill y Dyce determinaron el período de rotación de Mercurio en 59 +- 5 día a partir de las observaciones por radar. Má tarde, en 1971, Goldstein refinó el período de rotación hasta los 58.65 +- 0.25 día utilizando también observaciones por radar. Después de la observación cercana por la nave espacial Mariner 10, el perió se estbleció en 58.646 +- 0.005 días.

Aunque Mercurio no está anclado por las mareas al Sol, su período rotacional está relacionado con su período orbital. Mercurio rota sobre si mismo una vez y media en cada órbita. Debido a esta relación 3:2, un día de Mercurio (de un amanecer a otro amanecer) dura 176 días terrestres tal como se recoge en el siguiente diagrama.

Durante el pasado lejano de Mercurio, su período de rotación podría haber sido más rápido. Los científicos especulan que su rotación podría haberse realizado en tan sólo 8 horas, pero durante millones de años se ha ralentizado debido a las mareas solares. Un modelo de este proceso indica que tal desaceleración podría tardar 109 años y aumentaría la temperatura interior del planeta unos 100 grados Kelvin.

La mayor parte de los hallazgos científicos proceden de la nave espacial Mariner 10 que fue lanzada el 3 de Noviembre de 1973. Pasó por las cercanías del planeta el 29 de Marzo de 1974 a una distancia de 705 kilómetros desde la superficie. El 21 de Septiembre de 1974 pasó por segundo vez cerca del planeta y el 16 de Marzo de 1975 lo hizo una tercera vez. Durante estas visitas, se realizaron mas de 2,700 fotografías, que cubren el 45% de la superficie de Mercurio. Hasta esa fecha los científicos no habían llegado a sospechar siguiera que Mercurio poseyese campo magnético. Pensaban que como era pequeño, su núcleo no se podía haber solidificado hace mucho tiempo. La presencia de un campo magnético indica que el planeta tiene un núcleo de hierro que esta al menos parcialmente fundido. Los campos magnéticos son generados por la rotación de un núcleo fundido conductivo en un proceso que recibe el nombre de efecto dinamo.

El Mariner 10 nos mostró que Mercurio posee un campo magnético que es el 1% del campo magnético terrester. Este campo magnético está inclinado unos 7 grados respecto al eje de rotación de Mercurio y produce magnetosfera alrededor del planeta. La fuente de este campo magnético es desconocida. Podría deberse a un núcleo de hierro parcialmente fundido situado en el interior del planeta. Otra fuente del campo podróa ser la magnetización remanente de las rocas con hierro en su composici&acoute;n que fueron magnetizadas por un campo mágnetico más potente durante los años de juventud del planeta. A medida que el planeta se enfrió y solidificó la magnetización remanete se conservó.

Incluso antes del Mariner 10, ya se sabía que Mercurio tenía una densidad elevada. Su densidad es 5.44 g/cm3 que es comparable a la densidad terrestre de 5.52 g/cm3. En un estado sin compresión, la densidad de Mercurio es de 5.5 g/cm3 mientras que la de la Tierra sólo llega a los 4.0 g/cm3. Esta alta densidad indica que el planeta está compuesto en un 60 a 70 por ciento por un metales pesados y un 30% por silicatos pesado. Esto da lugar a un núcleo que ocupa el 75% del radio del planeta y tiene un volumen igual al 42% del volumen total del planeta.

La Superficie de Mercurio

Las imágenes enviadas a la Tierra por la nave espacial Mariner 10 muestran un mundo que recuerda a la Luna. Esta recubierto por cráteres, contiene grandes cuencas de anillos múltiples, y muchos ríos de lava. Los cráteres van desde los 100 metros (tamaño más pequeño que se puede diferenciar en las imágenes del Mariner 10) hasta los 1,300 kilómetros. Aparecen en varios estados de preservación. Algunos son jóvenes con bordes abruptos y brillantes rayos que se alejan de ellos. Otros están muy degradados, con bordes que han sido suavizados por el bombardeo de meteoritos. El cráter más grande de Mercurio es la Cuenca Caloris. Una cuenca fue definida por Hartmann y Kuiper (1962) como una "gran depresión circular con diferentes anillos concéntricos y alineaciones radiales". Otros consideran que cualquier cráter superior a los 200 kilómetros es una cuenta. La Cuenca Caloris tiene 1,300 kilómetros de diámetro, y fue causada probablemente por proyectiles que superaban los 100 kilómetros de sección. El impacto dió lugar a anillos montañosos concéntricos con alturas de tres kilómetros y enviaron su eyecciones hasta los 600 u 800 kilómetros sobre la superficie del planeta. (Otro buen ejemplo de cuenca con anillos concéntricos es la Región Valhalla en la luna de Júpiter, Calisto) Las ondas sísmicas producidas por el impacto en Caloris se enfocaron en el otro lado del planeta, dando lugar a una región de terreno caótico. Después del impacto el cráter se llenó parcialmente por ríos de lava.

Mercurio está marcado por grandes acantilados curvos o escarpaduras lobulares que fueron aparentemente formados a medida que Mercurio se enfriaba y se encogía en tamaño varios kilómetros. Esta reducción de tamaño produjo una corteza arrugada con farallones de varios kilómetros de altura y cientos de kilómetros de longitud.

La mayor parte de la superficie de Mercurio está cubierta por llanuras. Muchas de ellas son viejas y están llenas de cráteres, pero algunas más jóvenes tienen menos cráteres. Los científicos han clasificado estas llanuras como llanuras intercráter y llanuras suaves. Las primeras están menos saturadas de cráteres y estos tienen diámetros inferiores a los 15 kilómetros. Estas llanuras fueron formadas probablemente cuando los ríos de lava sepultaron el terreno antiguo. Las llanuras suaves son más jóvenes todavía con menos cráteres. Estas ultimas se pueden encontrar alrededor de la cuenca Caloris En algunas zonas se pueden ver parches de lava lisa que recubren los cráteres.

La historia de la formación de Mercurio es similar a la de la Tierra. Hace unos 4,500 millones de años se formó el planeta. Esta fue una época de intenso bombardeo de los planetas a medida que recolectaban el material y los restos de la nebulosa de la que se formaron. En una etapa temprana de esta formación, Mercurio probablemente se diferenció en un denso núcleo metálico y una corteza de silicatos. Despues de un período de intenso bombardeo, la lava corrío por la superficie del planeta y recubrió la antigua corteza. Alcanzado este punto, la mayor parte de los residuos de la nebulosa original habían sido barridos ya y Mercurio entró en un período de bombardeo más ligero. Durante este período se formaron las llanuras intercráteres. Luego Mercurio se enfrió. Su núcleo se contrajo dando lugar a su vez a la rotura de la corteza y originando la aparición de prominentes escarpes lobulares. Durante la tercera etapa, la lava anegó las tierras bajas y produjo las llanuras suaves. Durante la cuarta etapa el bombardeo de micrometeoritos produjo una superficie pulverulenta también conocida como regolito. Unos pocos meteoritos de mayor tamaño chocaron contra la superficie produciendo brillantes cráteres con radios. Salvo por las ocasionales colisiones de algún meteorito, la superficie de Mercurio ya no está activa y permanece como estaba hace millones de años.

¿Puede existir agua en Mercurio?

Podría parecer que Mercurio no puede poseer agua bajo ninguna forma. Tiene una atmósfera muy tenue y está muy caliente durante el día, pero en 1991 científicos del Caltech lanzaron ondas de radio sobre Mercurio y detectaron un retorno brillante muy poco usual sobre el polo norte del planeta. El aparente brillo del polo norte podría ser explicado por la presencia de hielo sobre o justo debajo de la superfice. Pero, ¿es posible que Mecurio tenga hielo? Debido a que la rotación de Mercurio es casi perpendicular a su plano orbital, el polo norte siempre ve el sol por debajo del horizonta y los científicos sospechan que podría estas a temperatura inferiores a los -161°C. Estas gélidas temperaturas podrían atrapar el agua que surge del planeta en forma de gas, o los hielos llevados hasta allí por los impactos cometarios. Estos depósitos de hielo podrían estar cubiertos por una capa de polvo y, a pesar de ello, dar un retorno brillante en el radar.

Estadísticas de Mercurio
Masa (kg)3.303e+23
Masa (Tierra = 1)5.5271e-02
Radio ecuatorial (km)2,439.7
Radio ecuatorial (Tierra = 1)3.8252e-01
Densidad media (gm/cm^3)5.42
Distancia media desde el Sol (km)57,910,000
Distancia media desde el Sol (Tierra = 1)0.3871
Período rotacional (días)58.6462
Período orbital (días)87.969
Velocidad media orbital (km/sec)47.88
Excentricidad orbital0.2056
Inclinación de su eje (grados)0.00
Inclinación orbital (grados)7.004
Gravedad en la superficie ecuatorial (m/sec^2)2.78
Velocidad de escape ecuatorial (km/sec)4.25
Albedo geométrico visual0.10
Magnitud (Vo)-1.9
Temperatura media en la superficie179°C
Temperatura máxima en la superficie427°C
Temperatura mínima en la superficie-173°C
Composición atmosférica
Helio
Sodio
Oxígeno
Otros

42%
42%
15%
1%

Animaciones de Mercurio

Vistas de Mercurio

Éste fotomosaico de Mercurio se construyó con fotos tomadas por el Mariner 10 seis horas después que la nave espacial llegase a las cercanías del planeta el 29 de Marzo de 1974. Estas imágenes se tomaron desde una distancia de 5,380,000 kilómetros (3,340,000 millas). (Cortesía Calvin J. Hamilton, USGS y NASA)

Mercurio
Éste mosaico de dos imágenes (FDS 26850, 26856) fue creado con fotos tomadas por el Mariner 10 unas cuantas horas después del acercamiento y primer encuentro de la nave espacial con el planeta el 29 de Marzo de 1974. (Crédito: Calvin J. Hamilton, y NASA)

Vista Saliente de Mercurio
Este mosaico de Mercurio fue creado a partir de más de 140 imágenes tomadas por la nave espacial Mariner 10 durante su vuelo por las cercanías del planeta más interior del sistema solar el 29 de Marzo de 1974. La trayectoría del Mariner 10 llevó a la nave espacial a través del hemisferio oculto de Mercurio. Las imágenes fueron realizadas durante el alejamiento de la nave del planeta, después de abandonar su sombra. (Cortesía Mark Robinson, Northwestern University)

Colinas de Mercurio
Como "terreno raro" se describe mejor a estas colinas, región delineada de Mercurio. Ésta área es el punto antípoda del gran cráter Caloris. La onda de impacto producida por el impacto del Caloris se reflejó y se enfocó a su punto antípoda, así se revolvió la corteza y se rompió en una serie de bloques complejos. El área que cubre es de cerca de 100 kilómetros (62 millas) de lado. (Crédito: Calvin J. Hamilton, y NASA; FDS 27370)

Suroeste de Mercurio
Ésta imagen es una parte del cuadrante suroeste de Mercurio tomada el 29 de Marzo de 1974, por la nave espacial Mariner 10. La fotografía se tomó cuatro horas después del momento de mayor acercamiento cuando el Mariner estuvo a 198,000 kilómetros (123,000 millas) del planeta. Los cráteres más grandes que se ven en ésta imagen tienen cerca de 100 kilómetros (62 millas) de diámetro. (Crédito: Calvin J. Hamilton, y NASA; FDS 27216, 27217, 27224, 27225)

Cráter Caloris
Éste cuadro muestra el Cráter Caloris (localizado a medio camino en la sombra del delimitador de la mañana). Caloris siginifica en Latín calor y el cráter es llamado así por su cercanía al punto subsolar (el punto más cercano al Sol) cuando Mercurio está en afelio. El cráter Caloris tiene un diámetro de 1,300 kilómetros (800 millas) y es la estructura más grande conocida de Mercurio. Se formó por el impacto de un proyectil con dimensiones de asteroide. El piso interior del cráter contiene llanuras lisas pero es altamente ranurado y fracturado. El norte está hacia arriba de la imagen. (Crédito Calvin J. Hamilton, y NASA; FDS 188-199)

Piso del Cráter Caloris
Ésta imagen es una vista de alta resolución del Cráter Caloris mostrado en la imagen anterior. Ésta muestra ranuras y fracturas que se incrementan en tamaño hacia el centro del cráter (superior izquierda). (Crédito: Calvin J. Hamilton, y NASA; FDS 126)

Cráteres con Aureolas Brillantes
Ésta imagen muestra dos grandes cráteres (superior derecha) con aureolas brillantes. Los cráteres tienen cerca de 40 kilómetros (25 millas) de diámetro. Las aureolas y rayos cubren a otros elementos en la superficie indicando que éstos son de los mas jóvenes en Mercurio. (Crédito: Calvin J. Hamilton, y NASA; FDS 275)

Cráter de Doble Anillo
Ésta imagen muestra un cráter de doble anillo el cual tiene un diámetro de 200 kilómetros (120 millas). El piso contiene material en llanuras lisas. El anillo interno del cráter está en una elevación menor que el anillo externo. (Crédito: Calvin J. Hamilton, y NASA; FDS 27301)

Grandes Fallas en Mercurio
Ésta imagen del Mariner 10 muestra el Rupes Santa María, que es el elemento sinuoso y obscuro que está atravesando el cráter en el centro de ésta imagen. Se descubrieron muchos elementos de Mercurio con las imágenes del Mariner y se interpretaron como enormes fallas donde parte de la corteza mercuriana fue empujada un poco encima de la parte adyacente por fuerzas de compresión. La abundancia y la longitud de las fallas indican que el radio de Mercurio decreció en 1-2 kilómetros (.6 - 1.2 millas) después de la solidificación y el impacto de cráteres en su superficie. Su volúmen probablemente cambió debido al enfriamiento del planeta, seguido de la formación de una corteza metálica de tres cuartos del tamaño del planeta. El norte está hacia arriba y tiene 200 kilómetros (120 millas). (Crédito: Calvin J. Hamilton, LPI, y NASA; FDS 27448)

Cordillera Antoniadi
Ésta es una imagen de unos 450 kilómetros (280 millas) de la cordillera llamada Antoniadi. Viaja a lo largo del borde derecho de la imagen, y cruza de lado a lado a un gran cráter de 80 kilómetros (50 millas) cerca de la mitad de su camino. Cruza llanuras lisas hacia el norte y llanuras entre cráteres al sur [Strom et al., 1975]. (Crédito: Calvin J. Hamilton, y NASA; FDS 27325)

Referencias [editar]

Notas [editar]

  1. a b Benz, W., Slattery, W. L., Cameron, A. G. W. (1988), Collisional stripping of Mercury's mantle, Icarus, v. 74, p. 516-528.
  2. Cameron, A. G. W.; La volatilización parcial de Mercurio (The partial volatilization of Mercury), Icarus, Vol. 64 (1985), pp. 285–294.
  3. Weidenschilling, S. J.; Fraccionamiento del hierro/silicato y origen de Mercurio (Iron/silicate fractionation and the origin of Mercury), Icarus, Vol. 35 (1987), pp. 99–111
  4. Lyttleton, R. A.; En las Estructuras Internas de Mercurio y Venus (On the Internal Structures of Mercury and Venus), Astrophysics and Space Science, Vol. 5 (1969), p. 18
  5. Lyttleton, R. A. (1969), On the Internal Structures of Mercury and Venus, Astrophysics and Space Science, v.5, p.18
  6. a b «Antena de la NASA corta a Mercurio hasta su núcleo». www.cielosur.com (3/05/07).
  7. a b «NASA Antenna Cuts Mercury to Core». www.jpl.nasa.gov (3/05/07).
  8. Schenk, P.; Melosh, H. J.; Lobate Thrust Scarps and the Thickness of Mercury’s Lithosphere, Abstracts of the 25th Lunar and Planetary Science Conference (1994), 1994LPI....25.1203S
  9. «MESSENGER: MErcury Surface, Space ENvironment, GEochemistry, and Ranging».
  10. Dzurisin, D.; La tectónica e historia volcánica de Mercurio deducida del estudio de escarpes, crestas de montañas, y otros lineamientos (The tectonic and volcanic history of Mercury as inferred from studies of scarps, ridges, troughs, and other lineaments), Journal of Geophysical Research, Vol. 83 (1978), pp. 4883–4906
  11. Van Hoolst, T.; Jacobs, C.; Mareas de Mercurio y estructura interior (Mercury’s tides and interior structure), Journal of Geophysical Research, Vol. 108 (2003), p. 7.
  12. León, Pedro (31-01-2008), MESSENGER nos envía muchas sorpresas, en sondas espaciales.com. URL accedida el 27-01-2008.
  13. Schultz, P. H.; Gault, D. E.; Efectos sísmicos de las mayores formaciones de cuencas en la Luna y Mercurio (Seismic effects from major basin formations on the moon and Mercury), The Moon, Vol. 12 (February 1975), pp. 159–177
  14. Slade, M. A.; Butler, B. J.; Muhleman, D. O.; Imagenes radar de Mercurio — Pruebas de hielo polar (Mercury radar imaging — Evidence for polar ice), Science, Vol. 258 (1992), pp. 635–640.
  15. Rawlins, K.; Moses, J. I.; Zahnle, K. J.; Fuentes Exogénicas de Agua para el Hielo Polar de Mercurio (Exogenic Sources of Water for Mercury’s Polar Ice), DPS, Vol. 27 (1995), p. 2112
  16. «Sondas Espaciales - MESSENGER NOS ENVÍA MUCHAS SORPRESAS».
  17. Gilvarry, J. J.; Relatividad en la Precesión del Asteroide Ícaro (Relativity Precession of the Asteroid Icarus), Physical Review, Vol. 89, No. 5 (March 1953), p. 1046
  18. Iorio, L.; Movimientos planetarios y gravedad modificada del Sistema Solar (Solar System planetary motions and modified gravity), arXiv:gr-qc/0511138 v1 25 Nov 2005 (table 4)
  19. Correia, A. C. M.; Laskar, J.; Mercury’s capture into the 3/2 spin–orbit resonance as a result of its chaotic dynamics, Nature, Vol. 429 (2004), pp. 848–850.
  20. Espenak, F.; Efeméride Planetaria Doce Años: 1995-2006 (Twelve Year Planetary Ephemeris: 1995–2006), NASA Reference Publication 1349
  21. Mercury and ancient cultures (2002), JHU/APL
  22. Dunne, J. A.; and Burgess, E.; El viaje de la Mariner 10 - Misión a Venus y Mercurio, NASA History Office publication SP-424 (1978)
  23. Sinnott, R. W.; Meeus, J.; John Bevis y una Rara Ocultación, Sky and Telescope, Vol. 72 (1986), p. 220
  24. Holden, E. S.; Anuncio del Descubrimiento del Periodo de Rotación de Mercurio [por el profesor Schiaparelli] (Announcement of the Discovery of the Rotation Period of Mercury [by Professor Schiaparelli]), Publications of the Astronomical Society of the Pacific, Vol. 2 (1890), p. 79
  25. Colombo, G., Periodo de Rotación del Planeta Mercurio (Rotational Period of the Planet Mercury), Nature, Vol. 208 (1965), p. 575
  26. «SP-423 Atlas de Mercurio». NASA. Consultado el 2007-03-09.
  27. Dantowitz, R. F.; Teare, S. W.; Kozubal, M. J.; Ground-based High-Resolution Imaging of Mercury, Astronomical Journal, Vol. 119 (2000), pp. 2455–2457
  28. «BepiColombo, The Mision». ESA, Science & Technology (9/09/07 15:27:09).

Bibliografía [editar]

  • Astronomía Fundamental, A. Feinstein, Editorial Kapelusz, (1982).
  • Worlds in the Sky, W. Sheehan, University of Arizona Press, (1992).

Véase también [editar]

Enlaces externos [editar]


No hay comentarios:

Publicar un comentario en la entrada